
1. Introduction
The eruption of Mt. Pinatubo in 1991 increased the global stratospheric aerosol loading by one order of magni-
tude for about 2 years. Satellite and in situ observations showed that the 1991 Pinatubo eruption depleted the 
tropical total column ozone (TCO) by 6%–8% (McCormick et  al., 1995; Schoeberl et  al., 1993), with a 20% 
local reduction 24–25 km above the Brazzaville site located at 4°S, 15°E (Grant et al., 1992). A TCO depletion 
of about 10%–15% was observed when the Pinatubo aerosols were transported to the Antarctic stratosphere in 
late September 1991, which was mainly a result of accelerated heterogeneous chemistry on the surface of Pina-
tubo sulfate aerosols and polar stratospheric clouds (Brasseur & Granier, 1992; Hofmann et al., 1992; Portmann 
et al., 1996; Solomon et al., 1993).

Tropical stratospheric ozone production and loss is governed by the Chapman cycle and the catalytic cycles involv-
ing active halogens (ClOx, BrOx), nitrogen (NOx) and hydrogen (HOx) (McCormick et al., 1995; Solomon, 1999). 
On the one hand, the enhanced aerosol surface area density (SAD) due to 1991 Pinatubo eruption provided reac-
tion surfaces for hydrolysis of dinitrogen pentoxide (N2O5), which depletes NOx and suppresses ozone depletion 
via the NOx catalytic cycle (Aquila et al., 2013; Fahey et al., 1993; Solomon et al., 1996). On the other hand, 
reduction of NOx increases concentrations of ClOx and HOx, which promotes ozone depletion via the odd hydro-
gen catalytic cycles in the lower stratosphere (Granier & Brasseur, 1992; Hofmann & Solomon, 1989; Solomon 
et al., 1993; Tabazadeh et al., 2002; Tie & Brasseur, 1995).

The long-term radiative effect is mostly controlled by sulfate aerosol (Labitzke & McCormick, 1992; Stenchikov 
et al., 2021), while the short-term radiative effect is heavily influenced by the volcanic ash and SO2 during the 
first weeks (Osipov et al., 2020; Stenchikov et al., 2021; Zhu et al., 2020). Because our study focuses on the 
long-term radiative effect, the short-term heating by the volcanic ash and SO2 is not considered. Consequently, 
the tropical upwelling was accelerated (Aquila et al., 2012; Kinne et al., 1992; Pitari & Mancini, 2002) and the 
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latitudinal distributions of ozone and other chemical tracers were perturbed (Lin & Fu, 2013; Revell et al., 2012). 
In addition to the dynamical feedback, the reaction rates of catalytic cycles changed in response to stratospheric 
warming (Lippmann et al., 1980; Michael et al., 1981; Mozurkewich & Calvert, 1988; Van Doren et al., 1990). 
Previous studies have focused primarily on heterogeneous and radiative-dynamical effects (Aquila et al., 2013; 
Kilian et al., 2020; Muthers et al., 2015; Telford et al., 2009). The radiative-catalytic effect and its relative contri-
bution to the tropical net ozone production anomalies have not been explicitly quantified.

Heterogeneous chemistry like the hydrolysis of N2O5 on liquid sulfate aerosols is saturated when the aerosol 
SAD anomaly is above a certain threshold, which varies by region (Fahey et al., 1993; Prather, 1992). However, 
the radiative-catalytic effect is not limited by aerosol SAD directly. Therefore, the relative contributions of the 
heterogeneous reactions and radiative-catalytic cycles to the net ozone production anomalies depend on the 
injection amount. It is necessary to separate the radiative-catalytic effect from heterogeneous chemistry and 
radiative-dynamical effects to predict the ozone change resulting from volcanic or stratospheric aerosol injection 
(solar radiation management) scenarios with various injection amounts and locations.

In this study, we use the Community Earth System Model-Whole Atmosphere Community Climate Model 
(CESM-WACCM) to simulate the chemical and dynamical impacts on the ozone production rate due to the 
1991 Pinatubo eruption. Satellites and in situ measurements of stratospheric aerosols and gaseous tracers (ozone 
and SO2) are compared against the model. With the model validated, we attribute the modeled tropical ozone 
net production anomalies to the heterogeneous reaction effect (denoted by 𝐴𝐴 𝐴𝐴

′

het
 ), the radiative-catalytic effect 

(denoted by 𝐴𝐴 𝐴𝐴
′

hom
 ) and the radiative-dynamical effect (i.e., acceleration of the Brewer-Dobson circulation (BDC), 

denoted by 𝐴𝐴 𝐴𝐴
′ ). Finally, sensitivity simulations are performed to evaluate the relative contribution of the hetero-

geneous reactions and radiative-catalytic cycles to the ozone production rate.

2. Methods
2.1. Model Experiments

We use the Community Earth System Model-Whole Atmosphere Community Climate Model, version 
1 (CESM1-WACCM) (Hurrell et al., 2013) coupled with the three-mode version of the Modal Aerosol Model 
(Liu et al., 2012) to study the stratospheric ozone response to the Pinatubo eruption. Based on SO2 observa-
tions from the Total Ozone Mapping Spectrometer (TOMS) and the Television Infrared Observation Satellite 
(TIROS) satellites, we inject 12 Tg SO2 into the nearest grid cells between 12:00 and 18:00 UTC on 15 June 
1991 in the “full” simulation scenario (Table S1 in Supporting Information S1) (Guo, Bluth, et al., 2004; Guo, 
Rose, et al., 2004; Mills et al., 2016). In this study, the injections of volcanic ash, halogen species and water 
vapor emission are not considered. We run the model from 1 January 1990 to 31 December 1995 with a 5-year 
model spin-up. The simulated three-dimensional wind is nudged (i.e., UV nudging, Davis et al., 2020; Schmidt 
et al., 2018) toward the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 
reanalysis (Gelaro et al., 2017). Shown in Figure S1 of the Supporting Information S1, the simulated magnitude 
and spatial distribution of the tropical residual velocity (w*) by CESM1-WACCM is similar to that calculated 
from MERRA-2. We also note that the nudged experiments don't resolve the full radiative and dynamical feed-
backs from Pinatubo. The nudged simulations with (the “full” scenario) and without (the “novolc” scenario) 
Pinatubo are performed to calculate the anomalies of aerosols and ozone due to the Pinatubo eruption. Simula-
tions with the radiation and heterogeneous chemistry turned off (“norad” and “nohet” scenarios, respectively) are 
performed to diagnose the relative contributions due to volcanic heating and increased aerosol SAD. Details of 
the model configurations are provided in Texts S1 and S2 in Supporting Information S1.

2.2. Residual Velocity and the TEM Continuity Equation

The BDC transports ozone poleward (Brewer, 1949; Dobson, 1956). In order to diagnose the zonal-mean change 
in stratospheric ozone due to Pinatubo, we use the Transformed Eulerian-Mean (TEM) formulation of the zonal-
mean ozone continuity equation with spherical coordinates. Details of TEM continuity equation are provided in 
Text S3 of the Supporting Information S1.

According to the TEM continuity equation (Equation S9 in Supporting Information S1), the ozone anomalies due 
to Pinatubo relative to the climatology can be divided into three terms: (a) the BDC transport anomaly (denoted by 
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𝐴𝐴 𝐴𝐴
′ ), (b) the eddy transport anomaly (𝐴𝐴 𝐴𝐴

′ ) and (c) the chemical term anomaly (𝐴𝐴 𝐴𝐴
′

chem
 ). In this study, we focus mainly 

on the anomalies of the chemical term (𝐴𝐴 𝐴𝐴
′

chem
 ). We further separate 𝐴𝐴 𝐴𝐴

′

chem
 into two processes: (a) the heterogeneous 

chemical term due to increased SAD (𝐴𝐴 𝐴𝐴
′

het
 ) and (b) the gas-phase chemical term in response to radiative-catalytic 

effect (𝐴𝐴 𝐴𝐴
′

hom
 ). Note that ozone radiative feedback is included in both 𝐴𝐴 𝐴𝐴

′

het
 and 𝐴𝐴 𝐴𝐴

′

hom
 terms. The perturbation in 

photochemical rates due to actinic flux reduction is included in term 𝐴𝐴 𝐴𝐴
′

hom
 . Note that the non-linearity relationship 

does exist between 𝐴𝐴 𝐴𝐴
′

hom
 and 𝐴𝐴 𝐴𝐴

′

het
 , but it's less than 1% above 30 mb in the tropics (Figure S2 in Supporting Infor-

mation S1). In this study, we focus on the tropical stratosphere above 30 mb, where the eddy ozone transport term 
is smaller than BDC and chemical terms in tropics above 30 mb (Miyazaki et al., 2005). The anomalies of the 
chemical and BDC terms are diagnosed by various simulation scenarios shown in Equations 1–4.

𝐵𝐵
′
= 𝐵𝐵full − 𝐵𝐵novolc (1)

𝑆𝑆
′

chem
= 𝑆𝑆full − 𝑆𝑆novolc (2)

𝑆𝑆
′

hom
= 𝑆𝑆full − 𝑆𝑆norad − (𝑆𝑆novolc − 𝑆𝑆BG_norad) (3)

𝑆𝑆
′

het
= 𝑆𝑆full − 𝑆𝑆nohet − (𝑆𝑆novolc − 𝑆𝑆BG_nohet ) (4)

3. Results
As shown in Figure 1, the simulated vertical profiles of SO2, aerosol SAD, and ozone are compared with satel-
lite observations. Figure 1a shows that the altitudes of the maximum SO2 concentrations between 10°S and the 
equator on 21 September 1991 were around 24–25 km, which agrees with the Microwave Limb Sound obser-
vations. Figure 1b shows that the stratospheric aerosol SAD was elevated by one order of magnitude in both 
observations and simulations. Satellite observations by Stratospheric Aerosol and Gas Experiment II (SAGE II) 
and balloon-borne optical particle counters at Laramie (41°N, 105°W, Kovilakam & Deshler, 2015) show that the 
aerosol SAD averaged from June 1991 to May 1993 was about 10 μm 2/cm 3 between 12 and 20 km. The observed 
SAD decreased by over one order of magnitude from 20 to 30 km. Modeled stratospheric SAD was within the 
observed variability (0.5 times standard deviation) above 15 km. The model underestimated the observed SAD 
below 15 km by ∼20%. Compared with the simulation without Pinatubo, the stratospheric SAD near Laramie 

Figure 1. Comparison between the observed and simulated SO2 (ppbv), surface area density (SAD) (μm 2/cm 3), NO2 percentage anomaly (%), and O3 (ppbv). (a) 
The simulated vertical distribution of the zonal averaged SO2 between 10°S and the equator on 21 September 1991 is shown by the red line. The red shading denotes 
the modeled variability (one standard deviation, 𝐴𝐴 𝐴𝐴 ). The observations from Microwave Limb Sound are denoted by the black dots with error bars according to Read 
et al. (1993). (b) The vertical distribution of SAD observed by the balloon-borne optical particle counter at Laramie (41°N, 105°W) averaged from June 1991 to May 
1993 is shown by the blue dashed line. Observations by SAGE II near Laramie averaged between June 1991 and May 1993 are denoted by the black dots with error 
bars. Simulated SAD near Laramie averaged between June 1991 and May 1993 is denoted by the red line. Simulated SAD in the non-volcanic conditions is shown by 
the gray dashed line. Error bars and shading in this panel denote 0.5𝐴𝐴 𝐴𝐴 . (c) The red line denotes the simulated ozone anomaly averaged between 30°S and 30°N from 
June 1991 to May 1993 relative to the simulated mean ozone concentrations between 1990 and 1995. The black dashed line shows the ozone anomaly in Stratospheric 
Water and Ozone Satellite Homogenized. The shading in this panel denotes 0.5𝐴𝐴 𝐴𝐴 of this period.
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averaged from June 1991 to May 1993 was elevated by 1–2 orders of magnitude. As shown in Figure S3 of the 
Supporting Information S1, the poleward transport of Pinatubo aerosol optical depth in the mid-visible range was 
observed by the AVHRR) satellite and simulated by the model.

Consistent with the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set (Davis et al., 2016), 
the simulated ozone anomalies averaged between 30°S and 30°N and from June 1991 to May 1993 exhibit a dipole 
distribution with positive ozone anomalies near 10 mb and negative anomalies near 30 mb (Figure 1c). Similar 
dipole distribution of ozone anomalies after 1991 Pinatubo eruption were observed by electrochemical concentra-
tion cell ozonesondes at Brazzaville, Congo (4°S, 15°E) (Grant et al., 1992); Boulder, Colorado (40°N) and Wallops 
Island, Virginia (38°N) (Hofmann et al., 1994). The observed tropical TCO and its temporal and spatial variabilities 
can be reproduced in our simulation (Figure S4 in Supporting Information S1). Shown in Figure S5 of the Support-
ing Information S1, similar TCO anomalies was also simulated by Telford et al. (2009). A temperature dipole distri-
bution is also simulated by WACCM and captured in the MERRA-2 reanalysis data set (Figure S6 in Supporting 
Information S1). In addition, the NOx was depleted significantly via the hydrolysis of N2O5 on the increased aerosol 
SAD (Aquila et al., 2013; Fahey et al., 1993; Solomon et al., 1996). Shown in Figure S7 of the Supporting Informa-
tion S1, the simulated percentage anomalies of stratospheric NO2 column density are within the observed variability 
(one standard deviation) of UV/Vis spectrophotometer observation at Lauder (Johnston & McKenzie, 1984) with 
the maximum depletion of about 40%–50% from October 1991 to June 1992. In summary, the simulation scenario 
“full” with 12 Tg SO2 injection can capture the characteristics of aerosols, O3, NO2, and SO2 after Pinatubo eruption.

As shown in Figure 2, the simulated largest change in the ozone production rate (anomalies of chemical tendency 
𝐴𝐴 𝐴𝐴

′

chem
 in the mixing ratio, with a unit of ppbv per second) due to Pinatubo aerosols occurred in the tropical strato-

sphere. A dipole of 𝐴𝐴 𝐴𝐴
′

chem
 is simulated, with positive 𝐴𝐴 𝐴𝐴

′

chem
 in the TB box (30–12.5 mb, 30°S–30°N) and negative 

𝐴𝐴 𝐴𝐴
′

chem
 in the TU box (11–3.5 mb, 30°S–30°N). The positive ozone tendency in TB box is mainly due to NOx 

depletion, while the negative tendency in TU box is mostly resulted from HOx increase, respectively (Tilmes 
et al., 2018). The simulated anomaly in the midlatitude and polar regions are more visually obvious (Figure S8 
in Supporting Information S1) when the rate anomaly expressed in concentration units (i.e., molecules/cm 3/s). 
Consistent with previous studies (Tilmes et al., 2018), negative anomalies of ozone production rates are simulated 
in the Antarctic lower stratosphere, attributed mainly to heterogeneous chemistry, which releases reactive halo-
gen species (Fahey et al., 1993; Solomon, 1999; Tilmes et al., 2008). In the tropical stratosphere (the TU and TB 
boxes in Figure 2), the ozone net production rate is dominated by catalytic cycles, including the reactive nitrogen 
cycle (NOx-cycle) in the TB box (Meul et al., 2014; Tilmes et al., 2009, 2018), while SO2/SO4 effects are more 
important when the injection amount well exceeds that of Pinatubo (Osipov et al., 2021). An ozone chemical net 
production rate anomaly dipole is simulated, with a positive anomaly (i.e., net production) in the TB box and 
negative anomalies (i.e., net chemical loss) in the TU box (Figure 2a). We decompose the simulated chemical 
anomaly into two terms, one from the change in the catalytic cycle rate through radiative feedback (𝐴𝐴 𝐴𝐴

′

hom
) , shown 

in Figure 2c, and one from the change through heterogeneous reactions (𝐴𝐴 𝐴𝐴
′

het
 ), shown in Figure 2d. Both of these 

terms display a dipole distribution with the same phase, similar to the total chemical term (𝐴𝐴 𝐴𝐴
′

chem
 ). The simulated 

𝐴𝐴 𝐴𝐴
′

hom
 is overall larger by a factor of 440%  than 𝐴𝐴 𝐴𝐴

′

het
 and dominates the chemical production anomaly of ozone in the 

tropical stratosphere.

The warmed stratosphere due to Pinatubo volcanic heating can change the transport of chemical tracers (Lin & 
Fu, 2013; Revell et al., 2012) as well as the catalytic cycle reaction rates, which are temperature dependent (Lippmann 
et al., 1980; Michael et al., 1981). The NOx production rate slows down in the TB box through N2O + O 1D as a 
result of the combined effect of a smaller rate constant (𝐴𝐴 𝐴𝐴N2O+O1D ) in warmer conditions and decreased NOy due 
to accelerated BDC. The negative tendency of NOx slows the ozone loss reaction via the NOx catalytic cycle with 
the simulated positive 𝐴𝐴 𝐴𝐴

′

hom
 . In addition, volcanic heating slows the ozone production rate by decreasing 𝐴𝐴 𝐴𝐴O+O2 in 

warmer conditions. The anomaly of the chemical tendency via gas-phase chemistry (𝐴𝐴 𝐴𝐴
′

hom
 ) is negative in the TU 

zone due to the faster HOx catalytic ozone loss cycle and the resultant slower ozone production rate.

For the 𝐴𝐴 𝐴𝐴
′

het
 term, the loss of NOx through the hydrolysis of N2O5 suppresses the catalytic NOx ozone loss cycle, 

and consequently there is a positive ozone net chemical production rate in the TB box. In the TU box, the 
active hydrogen cycle (HOx-cycle) and active chlorine and bromine cycle (ClOx + BrOx) dominate (Lary, 1997; 
Tilmes et al., 2018). NOx is a sink for active hydrogen (HOx) and chlorine (ClOx) (Fahey et al., 1993; Rodriguez 
et al., 1994; Tie & Brasseur, 1995), and the loss of NOx via the heterogeneous reaction increases HOx and ClOx 
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Figure 2. The simulated ozone tendency (𝐴𝐴 ppbv∕s ) anomaly averaged from June 1991 to May 1993 due to various terms including gas-phase chemistry (𝐴𝐴 𝐴𝐴
′

hom
 ), 

heterogeneous chemistry (𝐴𝐴 𝐴𝐴
′

het
 ), and Brewer-Dobson circulation (BDC) transport (𝐴𝐴 𝐴𝐴

′ ). (a) The latitudinal (cosine weighted) and vertical distribution of the chemical 
process and the change in the ozone production rate (simulation scenario “full” minus “novolc”). (b) Same as (a) but for the BDC effect diagnosed by the Transformed 
Eulerian-Mean continuity equation (simulation scenario “full” minus “novolc”); the residual circulation anomalies are denoted by the streamlines. (c) Same as (a) but 
for the gas-phase chemistry (simulation scenario difference between “full” and “norad” minus the difference between “novolc” and “BG_norad”). (d) Same as (a) but 
for the heterogeneous chemistry (simulation scenario difference between “full” and “nohet” minus the difference between “novolc” and “BG_nohet”). Simulations for 
calculations in all panels are from the scenarios with and without 12 Tg SO2 injected. The black rectangular boxes denote the zones of interest in this study. The tropical 
bottom box (TB) covers the region of 30–12.5 hPa, 30°S–30°N; the tropical upper box (TU) covers the region of 11–3.5 hPa, 30°S–30°N.
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ozone loss cycles. Similar ozone anomalies were found using simulations with and without Pinatubo SAD (Kilian 
et al., 2020; Muthers et al., 2015).

In Equation S9 in Supporting Information S1, the net ozone tendency is governed by the chemical term (S), the 
BDC transport term (B), and the eddy transport term (E). BDC transports tropical ozone to higher altitudes and 
latitudes (Brewer, 1949; Dobson, 1956). As shown in Figure S6 of the Supporting Information S1, the strato-
sphere is heated globally, with a tropical lower stratosphere temperature anomaly of about 2 K averaged from 
June 1991 to May 1993. Similar to Aquila et al. (2013), Figure 2b shows that the simulated BDC is accelerated 
in response to volcanic heating. Anomalies of residual circulation are denoted by the streamlines showing the 
tropical particles upwelling and then moving poleward. The climatological ozone shows that the TB box is sort 
of ozone peak, and is greater compared with the TU box. The accelerated BDC transports richer ozone upward in 
the tropical stratosphere, with a negative ozone tendency in the TB box and a positive ozone tendency in the TU 
box. The simulated BDC-induced ozone tendency anomaly is of the same magnitude as the simulated chemical 
tendency shown in Figure 2a, but with the opposite phase.

Figure 3a compares the temporal distributions between 𝐴𝐴 𝐴𝐴
′

hom
 and 𝐴𝐴 𝐴𝐴

′

het
 in the TB box at 15 mb from January 1991 

to December 1995. Consistent with the simulated temperature anomaly shown in Figure 3b, 𝐴𝐴 𝐴𝐴
′

hom
 reaches a maxi-

mum in late 1991 and early 1992 and decays to negligible levels 2 years after the Pinatubo eruption. The chemical 
tendency due to heterogeneous chemistry (𝐴𝐴 𝐴𝐴

′

het
 ) grows rapidly in the first few months after Pinatubo erupts and 

decays to a negligible level by July 1993, when the volcanic sulfate aerosol SAD decays below 0.1 𝐴𝐴 𝐴𝐴m
2
∕cm

3 , as 
shown in Figure 3b. Shown in Figure 3a, about two thirds of the chemical change in ozone concentration at 15 mb 
(tendency integrated over time) is attributed by the change in gas-phase chemistry (𝐴𝐴 𝐴𝐴

′

hom
 ); while the remaining 

one third is attributed by the change in the heterogeneous chemistry (𝐴𝐴 𝐴𝐴
′

het
 ).

Figure 3. (a) Simulated monthly ozone production rate anomalies (𝐴𝐴 molec∕cm
3
∕s ) at 15 hPa over 30°S–30°N due to the 

gas-phase chemistry (simulation scenario difference between “full” and “norad” minus the difference between “novolc” and 
“BG_norad”) is shown by the red line; The anomaly due to the heterogeneous chemistry (simulation scenario difference 
between “full” and “nohet” minus the difference between “novolc” and “BG_nohet”) is denoted by the blue line; The 
anomaly due to the total chemical effect (simulation scenario “full” minus “novolc”) is denoted by the shadow; (b) Simulated 
temperature anomalies (K) at 15 hPa (simulation scenario “nohet” minus “BG_nohet”) are denoted by red solid line; the 
aerosol surface area density anomalies (𝐴𝐴 𝐴𝐴m

2
⋅ cm

−3 ) at 15 hPa (simulation scenario “norad” minus “BG_norad”) are denoted 
by the blue dash line. Simulations for calculation in all panels are from the scenarios with and without 12 Tg SO2 injected.
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4. Sensitivity Tests
Sensitivity simulations are conducted with various injected amounts of SO2 (i.e., 6.0, 4.0, 2.0, 1.0, and 0.5 Tg) 
to diagnose the dependence of 𝐴𝐴 𝐴𝐴

′

hom
 and 𝐴𝐴 𝐴𝐴

′

het
 on the simulated volcanic aerosols. As shown in Figure 4a, 98% 

of the 2-year averaged tropical SAD anomaly is located below 15 mb. In the TB box, the increasing rate of 𝐴𝐴 𝐴𝐴
′

het
 

with  the injection amount decreases quickly with injected amounts above 1 Tg (Figure 4b). The saturation of 𝐴𝐴 𝐴𝐴
′

het
 

is because under high load of aerosol, N2O5 is converted to HNO3 as fast as it can be formed. The net conversion 
rate of NOx to HNO3 becomes independent of the aerosol loading (Fahey et al., 1993; Prather, 1992; Rodriguez 
et  al.,  1991; Solomon,  1999). A similar saturation threshold was reported by Berthet et  al.  (2017), in which 
changes to NOx and HNO3 induced by the Sarychev eruption (0.9 Tg) were comparable to those of Pinatubo due 
to saturation. In contrast, 𝐴𝐴 𝐴𝐴

′

hom
 increase near linearly with injection amount. Our study suggests that in the TB 

box, both terms contribute to the net ozone chemical production rate anomaly nearly equally when the amount 
of injected SO2 is less than 2 Tg. 𝐴𝐴 𝐴𝐴

′

hom
 becomes increasingly dominant when the injected amount exceeds 2 Tg. 

The negative anomaly of the ozone tendency due to accelerated BDC (𝐴𝐴 𝐴𝐴
′ ) increases with injection amount and 

offsets the positive ozone tendency anomaly due to 𝐴𝐴 𝐴𝐴
′

hom
 . Shown in Figure 4b, in the TU box, where the HOx cycle 

dominates, limited aerosol SAD anomalies are modeled (not saturated) compared with TB box in the Pinatubo 
scenario (Figure 4a). Both 𝐴𝐴 𝐴𝐴

′

het
 and 𝐴𝐴 𝐴𝐴

′

hom
 are negative and contribute nearly equally to the net ozone chemical 

production rate with various injection scenarios. The transport impact from the accelerated BDC (𝐴𝐴 𝐴𝐴
′ ) dominates 

the ozone tendency in TU box.

5. Conclusions
The Pinatubo eruption in 1991 injected 10–20 Tg SO2 into the stratosphere and perturbed the stratospheric chem-
istry. The WACCM-MAM3 is used to study the contributions from gas-phase and heterogeneous chemistry to the 
anomalies of the stratospheric ozone tendency. Simulated anomalies of aerosols, SO2, NO2, and ozone following 
the Pinatubo eruption are compared and validated against satellite and balloon-borne in situ measurements.

Figure 4. (a) The vertical distribution of surface area density (SAD) averaged from June 1991 to May 1993 over 30°S–30°N. The thick blue line and text denote 
the aerosol SAD in TU zone; the thick red line and text denote the aerosol SAD in TB zone. (b) The sensitivity of ozone production rate (𝐴𝐴 molec∕cm

3
∕s ) over TB 

box averaged from June 1991 to May 1993 to the amount of SO2 injected. The red circle denotes the change of ozone production rate due to gas-phase chemistry 
(simulation scenario difference between “full” and “norad” minus the difference between “novolc” and “BG_norad”) with equivalent mass of SO2 injected; the change 
of heterogeneous chemistry (simulation scenario difference between “full” and “nohet” minus the difference between “novolc” and “BG_nohet”) is shown by the blue 
cross; the ozone tendencies due to Brewer-Dobson circulation is shown by green squares. (c) Same as (b) but over TU box.
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Model simulations with volcanic heating and heterogeneous chemistry turned on and off suggest that the 
largest ozone production rate anomalies occurred in the tropical stratosphere, with positive ozone production 
centered at ∼10 mb, and negative ozone production centered at ∼20 mb. The simulated dipole in the ozone 
production rate anomaly in the tropics is due to changes in both gas-phase chemistry (e.g., NOx and HOx 
catalysis cycles) and heterogeneous chemistry (e.g., N2O5 hydrolysis). Previous studies show that heating from 
volcanic sulfate aerosols causes tropical upwelling and extratropical downwelling (Aquila et al., 2012, 2013). 
The accelerated tropical upwelling redistributes the stratospheric ozone, with a positive tendency at ∼10 mb 
and a negative tendency at ∼20 mb. The simulated chemical tendency of the ozone is of the same magnitude 
as the dynamical tendency, but opposite in sign. In the tropics, the ozone change due to enhanced BDC is 
dominant, and it can offset the chemical tendencies, showing ozone net loss in the TB box and ozone net gain 
in the TU box.

Our study finds that 3–5 months after the Pinatubo eruption, the tropical ozone chemical tendency due to volcanic 
heating is more important than that caused by heterogeneous reactions on the surfaces of sulfate. Sensitivity stud-
ies further suggest that the ozone tendency due to heterogeneous chemistry is saturated when the injected mass 
is greater than 2 Tg, while the ozone tendency due to the gas-phase chemistry as well as the BDC transport is not 
limited by saturation effect.

Data Availability Statement
The publicly available data can be downloaded via the following URLs: The SWOOSH data can be downloaded 
via https://csl.noaa.gov/groups/csl8/swoosh/; SAGE II can be downloaded via https://figshare.com/s/c48bba-
68f5eafbbd7903; the NDACC Measurements at the station in Lauder, New Zealand, can be downloaded via 
https://figshare.com/s/c48bba68f5eafbbd7903; the MERRA-2 forcing data can be downloaded via https://rda.
ucar.edu/datasets/ds313.3/; the in situ aerosol measurements at Laramie can be downloaded via http://www-das.
uwyo.edu/∼deshler/Data/Aer_Meas_Wy_read_me.htm; the AVHRR satellite data can be downloaded via https://
www.ncei.noaa.gov/products/climate-data-records/avhrr-aerosol-optical-thickness. Model simulations can be 
downloaded via https://figshare.com/s/c48bba68f5eafbbd7903.
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